FOURIER TRANSFORM - FINITE WAVE TRAIN

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 26 June 2025.

The Fourier transform of a function F(t) is given by

$$G(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(t) e^{-i\omega t} dt \tag{1}$$

Here we present an example of a finite wave train, which is a function that is a sine wave over a restricted domain, and zero elsewhere.

Find the Fourier transform of

$$F(t) = \frac{\sin \pi t}{1 - t^2} = -\frac{\sin \pi t}{t^2 - 1} \tag{2}$$

Writing the sine as

$$\sin \pi t = \frac{e^{i\pi t} - e^{-i\pi t}}{2i} \tag{3}$$

we have from 1

$$G(\omega) = -\frac{1}{4\pi i} \int_{-\infty}^{\infty} \frac{e^{it(\pi-\omega)} - e^{-it(\pi+\omega)}}{(t-1)(t+1)} dt \tag{4}$$

The integral in 4 can be done by using indented contours around the poles at $t = \pm 1$. Consider the first exponential:

$$G_1(\omega) = -\frac{1}{4\pi i} \int_{-\infty}^{\infty} \frac{e^{it(\pi - \omega)}}{(t - 1)(t + 1)} dt$$
 (5)

We would like to use a contour consisting of a large semicircle in either the upper or lower half plane, with small semicircular arcs around $t=\pm 1$. To have the integral around the large semicircle go to zero, we can invoke Jordan's lemma, which is valid if $\pi-\omega>0$. In this case, the remaining portions of the contour integral are

$$-\frac{1}{4\pi i} \left[\int_{-\infty}^{-s} + \int_{S} + \int_{s}^{-r} + \int_{R} + \int_{r}^{\infty} \right] \frac{e^{it(\pi-\omega)}}{(t-1)(t+1)} dt \tag{6}$$

where \int_S is the integral around the indentation at t=-1, \int_s^{-r} is the integral along the path between the two indentations, and \int_R is the integral around

the indentation at t = +1. In the limit as $s \to 0$ and $r \to 0$ We have

$$\int_{-\infty}^{\infty} \frac{e^{it(\pi-\omega)}}{(t-1)(t+1)} dt = -\left[\int_{S} + \int_{R}\right]$$
 (7)

We use the formula for evaluating integrals around indentations where the indentation is a clockwise contour spanning a half circle, so that the angular range is $-\pi$. We have

$$\left[\int_{S} + \int_{R} \right] \frac{e^{it(\pi - \omega)}}{(t - 1)(t + 1)} dt = -i\pi \left[\text{Res}(-1) + \text{Res}(1) \right]$$
 (8)

The residues are

$$\operatorname{Res}(-1) = \frac{e^{-i(\pi - \omega)}}{-2} \tag{9}$$

$$\operatorname{Res}(1) = \frac{e^{i(\pi - \omega)}}{2} \tag{10}$$

so we have

$$-\left[\int_{S} + \int_{R}\right] \frac{e^{it(\pi-\omega)}}{(t-1)(t+1)} dt = i\pi \left(\frac{e^{i(\pi-\omega)}}{2} - \frac{e^{-i(\pi-\omega)}}{2}\right)$$
(11)

$$= -\pi \sin(\pi - \omega) \tag{12}$$

$$= -\pi \sin \omega \tag{13}$$

Therefore

$$-\frac{1}{4\pi i} \int_{-\infty}^{\infty} \frac{e^{it(\pi-\omega)}}{(t-1)(t+1)} dt = -\frac{1}{4\pi i} \left(-\pi \sin \omega\right) = -\frac{i}{4} \sin \omega; \quad \omega < \pi \quad (14)$$

When $\omega > \pi$, we can use a contour with a large semicircle in the lower half plane, again with indentations around $t=\pm 1$. This time, however, the indentations extend into the lower half plane, so the contour is counterclockwise rather than clockwise as it was for the case $\omega < \pi$. This flips the sign in the $\int_S + \int_R$ integrals, but leaves everything else (including the residues) unchanged. Thus we get

$$-\frac{1}{4\pi i} \int_{-\infty}^{\infty} \frac{e^{it(\pi-\omega)}}{(t-1)(t+1)} dt = \frac{i}{4} \sin \omega; \quad \omega > \pi$$
 (15)

For the second term in 4, the process is the same. For $\omega < -\pi$ we use the upper contour with the result

$$-\left[\int_{S} + \int_{R}\right] \frac{e^{-it(\pi+\omega)}}{(t-1)(t+1)} dt = i\pi \left[\text{Res}(-1) + \text{Res}(1)\right]$$
 (16)

$$= i\pi \left(\frac{e^{i(\pi+\omega)}}{-2} + \frac{e^{-i(\pi+\omega)}}{2} \right) \tag{17}$$

$$= \pi \sin(\pi + \omega) \tag{18}$$

$$= -\pi \sin \omega \tag{19}$$

Therefore

$$-\frac{1}{4\pi i} \int_{-\infty}^{\infty} \frac{e^{-it(\pi+\omega)}}{(t-1)(t+1)} dt = -\frac{1}{4\pi i} (-\pi \sin \omega) = -\frac{i}{4} \sin \omega; \quad \omega < -\pi$$
(20)

For $\omega > -\pi$, again the only change is flipping the sign of the result, so we have

$$-\frac{1}{4\pi i} \int_{-\infty}^{\infty} \frac{e^{-it(\pi+\omega)}}{(t-1)(t+1)} dt = \frac{i}{4} \sin \omega; \quad \omega > -\pi$$
 (21)

Combining 14, 15, 20 and 21 to get 4 we have

$$G(\omega) = \begin{cases} -\frac{i}{4}\sin\omega - \left(-\frac{i}{4}\sin\omega\right) = 0 & \omega < -\pi \\ -\frac{i}{4}\sin\omega - \frac{i}{4}\sin\omega = -\frac{i}{2}\sin\omega & -\pi < \omega < \pi \\ \frac{i}{4}\sin\omega - \frac{i}{4}\sin\omega = 0 & \omega > \pi \end{cases}$$
(22)

Thus we have a single cycle of a sine wave between $\omega = -\pi$ and $\omega = \pi$, with the function being zero outside these limits. This is a *finite wave train*. The function G is continuous everywhere, since the endpoints of the three segments match up. A plot (apart from the imaginary factor i) is shown in Fig. 1.

We can combine all this into a single formula by using the Heaviside step function $H\left(x\right)$, defined as

$$H(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases} \tag{23}$$

We get

$$G(\omega) = \frac{i}{2}\sin\omega \left(H(\omega - \pi) - H(\omega + \pi)\right) \tag{24}$$

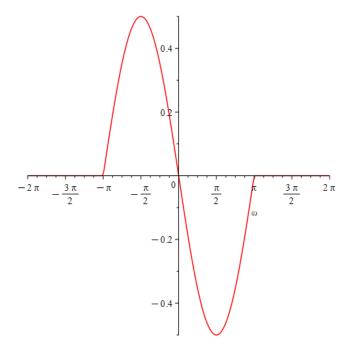


FIGURE 1. The transform $G(\omega)$.