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The Fourier transform of a function F'(t) is given by
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Here we present an example of a finite wave train, which is a function that
1s a sine wave over a restricted domain, and zero elsewhere.
Find the Fourier transform of
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Writing the sine as
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we have from 1]
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The integral in 4] can be done by using indented contours| around the poles
at t = +1. Consider the first exponential:
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We would like to use a contour consisting of a large semicircle in either
the upper or lower half plane, with small semicircular arcs around ¢ = +£1.
To have the integral around the large semicircle go to zero, we can invoke
Jordan’s lemma, which is valid if 7 —w > 0. In this case, the remaining
portions of the contour integral are
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where [ is the integral around the indentation att = —1, [, is the integral

along the path between the two indentations, and [ is the integral around
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the indentation at ¢t = +1. In the limit as s — 0 and » — 0 We have
o0 elit(r—w)
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We use the formula for evaluating integrals around indentations where the

indentation is a clockwise contour spanning a half circle, so that the angular
range is —m. We have
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The residues are
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so we have
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Therefore
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When w > 7, we can use a contour with a large semicircle in the lower
half plane, again with indentations around ¢ = +1. This time, however,
the indentations extend into the lower half plane, so the contour is coun-
terclockwise rather than clockwise as it was for the case w < 7. This flips
the sign in the [¢+ [, integrals, but leaves everything else (including the
residues) unchanged. Thus we get
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For the second term in 4] the process is the same. For w < —m we use the
upper contour with the result
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= msin (7 +w) (18)
= —7sinw (19)
Therefore
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For w > —m, again the only change is flipping the sign of the result, so we
have
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Combining [[4] [I5] [20] and 21| to get ] we have
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G(w) =4 —gsinw—gsinw = —3sinw —mT<w<m (22)
3sinw— zsinw =0 w>T
Thus we have a single cycle of a sine wave between w = —7 and w = T,

with the function being zero outside these limits. This is a finite wave train.
The function G is continuous everywhere, since the endpoints of the three
segments match up. A plot (apart from the imaginary factor 7) is shown in

Fig. [1]
We can combine all this into a single formula by using the Heaviside step
function H (x), defined as

0 =<0
H(x):{l v>0 (23)
We get ‘

G(w)=zsinw(H (w—7)—H(w+m)) (24)
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FIGURE 1. The transform G (w).



